MA 3046

Matrix Algebra

Final Exam - Quarter II - AY 03-04

Instructions: Work all problems. Show appropriate intermediate work for full or partial credit. Three pages of notes $(8\frac{1}{2})$ by 11 inches, both sides, handwritten) permitted. Read the questions carefully.

1. (35 points) Using the **QR** method, solve the system:

$$\mathbf{A} \mathbf{x} = \begin{bmatrix} 2 & 1 \\ 2 & -7 \\ 2 & 1 \\ 2 & -7 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -2 \\ 14 \\ 12 \\ 12 \end{bmatrix}$$

solution:

In order to solve this by the **QR** method, we must first find the **QR** factorization of A. We could do this by any of several methods, but Gram-Schmidt is probably easiest. (Note that, in this case, with only two columns, the classic and modified versions are identical. Also note that, because the original matrix **A** is only 4×2 , this problem is likely only solvable in the least-squares sense.)

The modified Gram-Schmidt algorithm is:

(1) Form:
$$\mathbf{v}^{(j)} = \mathbf{a}^{(j)}$$
, $j = 1, 2, ..., n$
(2) For $j = 1, 2, ..., n - 1$:

(2) For
$$j = 1, 2, ..., n - 1$$
:

Form:
$$r_{jj} = \| \mathbf{v}^{(j)} \|$$
 and $\mathbf{q}^{(j)} = \mathbf{v}^{(j)}/r_{jj}$
For $k = (j+1), \dots, n$, do
$$r_{jk} = \mathbf{q}^{(j)} \mathbf{v}^{(k)}$$

$$\mathbf{v}^{(k)} = \mathbf{v}^{(k)} - r_{jk}\mathbf{q}^{(j)}$$
(3) Finally, form: $r_{nn} = \| \mathbf{v}^{(n)} \|$ and $\mathbf{q}^{(n)} = \mathbf{v}^{(n)}/r_{nn}$

(3) Finally, form:
$$r_{nn} = \|\mathbf{v}^{(n)}\|$$
 and $\mathbf{q}^{(n)} = \mathbf{v}^{(n)}/r_{nn}$

So, in this problem, we start with

$$\mathbf{v}^{(1)} = \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix} \quad \text{and} \quad \mathbf{v}^{(2)} = \begin{bmatrix} 1\\-7\\1\\-7 \end{bmatrix}$$

Therefore, for j=1: $r_{11} = \|\mathbf{a}^{(1)}\| = \sqrt{2^2 + 2^2 + 2^2 + 2^2} = \sqrt{16} = 4$, and

$$\mathbf{q}^{(1)} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

Proceeding then to remove the components in this direction from the remaining vectors, we have, for k = 2,

$$r_{12} = \mathbf{q}^{(1)}{}^{H} \mathbf{v}^{(2)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ -7 \\ 1 \\ -7 \end{bmatrix} = -6$$

and so

SO

$$\mathbf{v}^{(2)} = \mathbf{v}^{(2)} - (1)\mathbf{q}^{(1)} = \begin{bmatrix} 1 \\ -7 \\ 1 \\ -7 \end{bmatrix} - (-6) \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 4 \\ -4 \end{bmatrix}$$

Next, for j = 2,

$$r_{22} = \|\mathbf{v}^{(2)}\| = 8$$
 and so $\mathbf{q}^{(2)} = \mathbf{v}^{(2)}/8 = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$

Therefore, the **QR** decomposition of the original matrix is:

$$\begin{bmatrix} 2 & 1 \\ 2 & -7 \\ 2 & 1 \\ 2 & -7 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 4 & -6 \\ 0 & 8 \end{bmatrix}$$

Then, since $\mathbf{Q}^H \mathbf{Q} = \mathbf{I}$, the solution of

$$\mathbf{A} \mathbf{x} = \mathbf{Q} \mathbf{R} \mathbf{x} = \mathbf{b}$$

is obtained by solving

$$\mathbf{R} \mathbf{x} = \mathbf{Q}^H \mathbf{b}$$

i.e.

$$\begin{bmatrix} 4 & -6 \\ 0 & 8 \end{bmatrix} \mathbf{x} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -2 \\ 14 \\ 12 \\ 12 \end{bmatrix} = \begin{bmatrix} 18 \\ -8 \end{bmatrix}$$

or

Note, although not required, this solution can easily be checked. But, in doing so, it is **vital** to remember this is a least-squares problem! We can easily show that

$$\begin{bmatrix} 2 & 1 \\ 2 & -7 \\ 2 & 1 \\ 2 & -7 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 13 \\ 5 \\ 13 \end{bmatrix} \neq \mathbf{b}$$

but

$$\mathbf{r} = \mathbf{b} - \mathbf{A} \mathbf{x} = \begin{bmatrix} -2\\14\\12\\12 \end{bmatrix} - \begin{bmatrix} 5\\13\\5\\13 \end{bmatrix} = \begin{bmatrix} -7\\1\\7\\-1 \end{bmatrix}$$

which is obviously orthogonal to both columns of A. Therefore we have the correct least-squares solution.

2. (40 points) a. Using partial pivoting, and simulating a three-digit decimal computer that rounds all intermediate calculations, complete the partial $\mathbf{P} \mathbf{A} = \mathbf{L} \mathbf{U}$ decomposition shown (note no row interchanges have been required up to this point):

$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 4 & 2 \\ -1 & 2 & -5 & 0 \\ 1 & 2 & -9 & 8 \\ 1 & 1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -.5 & 1 & 0 & 0 \\ .5 & 0 & 1 & 0 \\ .5 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & -3 & 1 \\ 0 & 3 & -11 & 7 \\ 0 & 2 & -4 & -2 \end{bmatrix}$$

solution:

Observe that, at this point, we have

$$\mathbf{L}_{work} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -.5 & 1 & 0 & 0 \\ .5 & 0 & 1 & 0 \\ .5 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{U}_{work} = \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & -3 & 1 \\ 0 & 3 & -11 & 7 \\ 0 & 2 & -4 & -2 \end{bmatrix}$$

and
$$\mathbf{p} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

But now the largest element in the working portion of the second column is on the third row. So we must interchange

- (1) The second and third rows of \mathbf{U}_{work} .
- (2) The subdiagonal elements in the second and third rows of \mathbf{L}_{work} .
- (3) The second and third rows of \mathbf{p} . to give

$$\mathbf{L}_{work} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ .5 & 1 & 0 & 0 \\ -.5 & 0 & 1 & 0 \\ .5 & 0 & 0 & 1 \end{bmatrix} , \quad \mathbf{U}_{work} = \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 1 & -3 & 1 \\ 0 & 2 & -4 & -2 \end{bmatrix}$$

and
$$\mathbf{p} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \end{bmatrix}$$

Then we can eliminate in the second column of \mathbf{U}_{work} . Emulating a three-digit, rounding machine, this means

$$\begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 1 & -3 & 1 \\ 0 & 2 & -4 & -2 \end{bmatrix} \quad R_3 - (.333)R_2 \implies \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 0 & 0.660 & -1.33 \\ 0 & 0 & 3.34 & -6.67 \end{bmatrix}$$

Note we have to be a little "delicate" here to accurately simulate the specified machine. For example, to update the element in the (3,3) position, we should compute:

$$-3.00 - \overbrace{(.333) * (-11.0)}^{-3.663} = -3.00 + 3.66 = .660$$

After we also update the corresponding elements of \mathbf{L}_{work} , we have:

$$\mathbf{L}_{work} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ .5 & 1 & 0 & 0 \\ -.5 & 0.333 & 1 & 0 \\ .5 & 0.667 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{U}_{work} = \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 0 & 0.660 & -1.33 \\ 0 & 0 & 3.34 & -6.67 \end{bmatrix}$$

Next we must eliminate in the third column. But, again, the largest element in the working portion of that column is not on the diagonal. So we must first interchange :

- (1) The third and fourth rows of \mathbf{U}_{work} .
- (2) The subdiagonal elements in the third and fourth rows of \mathbf{L}_{work} .
- (3) The third and fourth rows of **p**.

This yields:

$$\mathbf{L}_{work} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ .5 & 1 & 0 & 0 \\ .5 & 0.667 & 1 & 0 \\ -.5 & 0.333 & 0 & 1 \end{bmatrix}, \quad \mathbf{U}_{work} = \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 0 & 3.34 & -6.67 \\ 0 & 0 & 0.660 & -1.33 \end{bmatrix}$$

and
$$\mathbf{p} = \begin{bmatrix} 1\\3\\4\\2 \end{bmatrix}$$

Now we can proceed with elimination:

$$\begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 0 & 3.34 & -6.67 \\ 0 & 0 & 0.660 & -1.33 \end{bmatrix} \xrightarrow{R_4 - (0.198)R_3} \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 0 & 3.34 & -6.67 \\ 0 & 0 & 0 & -0.0100 \end{bmatrix}$$

and so now we can fill in the final element in

$$\mathbf{L}_{work} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ .5 & 1 & 0 & 0 \\ .5 & 0.667 & 1 & 0 \\ -.5 & 0.333 & 0.198 & 1 \end{bmatrix}$$

Therefore $\mathbf{P} \mathbf{A} = \mathbf{L} \mathbf{U}$ where

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad , \quad \mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ .5 & 1 & 0 & 0 \\ .5 & 0.667 & 1 & 0 \\ -.5 & 0.333 & 0.198 & 1 \end{bmatrix}$$

and

$$\mathbf{U} = \begin{bmatrix} 2 & -2 & 4 & 2 \\ 0 & 3 & -11 & 7 \\ 0 & 0 & 3.34 & -6.67 \\ 0 & 0 & 0 & -0.0100 \end{bmatrix}$$

b. Based on your computations in part a, do you think this matrix is well-conditioned for a three digit machine?

solution:

Despite the use of partial pivoting, we still have a "small" (order of magnitidue of three-digit machine precision) pivot in **L**. Since a zero pivot would connote a singular matrix, this small pivot implies that **A** is nearly singular. Therefore, we expect this matrix to be ill-conditioned in a three-digit machine.

3. (30 points) Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 5 & 1 \\ 2 & 3 & -1 \end{bmatrix}$$

Five iterations of the power method without normalization after each step have produced:

$$\mathbf{x}^{(5)} = \begin{bmatrix} 457 \\ 4520 \\ 2315 \end{bmatrix}$$

Conduct one more iteration of the method, and estimate both the dominant eigenvalue and its associated eigenvector.

solution:

Although not necessary (since eigenvectors are unique only up to direction), we will normalize at this point, using the infinity norm:

$$\mathbf{x}^{(5)} = \frac{\mathbf{x}^{(5)}}{4520} = \begin{bmatrix} 0.1011\\1.0000\\0.5122 \end{bmatrix}$$

Now do one more iteration of the power method:

$$\mathbf{x}^{(6)} = \mathbf{A} \, \mathbf{x}^{(5)} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 5 & 1 \\ 2 & 3 & -1 \end{bmatrix} \begin{bmatrix} 0.1011 \\ 1.0000 \\ 0.5122 \end{bmatrix} = \begin{bmatrix} 0.5646 \\ 5.4111 \\ 2.6900 \end{bmatrix}$$

At this point, we may or may not normalize again. We choose to:

$$\mathbf{x}^{(6)} = \frac{\mathbf{x}^{(6)}}{5.4111} = \begin{bmatrix} 0.1043\\1.0000\\0.4971 \end{bmatrix}$$

The eigenvalue is now best estimated using the Rayleigh quotient:

$$R = \frac{\mathbf{x}^{(6)}^T \mathbf{A} \mathbf{x}^{(6)}}{\mathbf{x}^{(6)}^T \mathbf{x}^{(6)}}$$

Note

$$\mathbf{A} \mathbf{x}^{(6)} = \begin{bmatrix} 0.6129 \\ 5.3928 \\ 2.7115 \end{bmatrix} \implies \mathbf{x}^{(6)}^T \mathbf{A} \mathbf{x}^{(6)} = 6.8048$$

and

$$\mathbf{x}^{(6)} \mathbf{x}^{(6)} = 1.2580 \implies R = \frac{6.8048}{1.2580} = 5.4090$$

Therefore

$$\lambda_1 = 5.4090$$
 and $\mathbf{q}^{(1)} = \begin{bmatrix} 0.1043\\ 1.0000\\ 0.4971 \end{bmatrix}$

4. (35 points) a. Perform two iterations of the Gauss-Seidel method for the solution of:

$$\begin{bmatrix} 8 & 1 & -2 \\ 0 & 4 & 1 \\ -2 & 0 & 10 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ -9 \end{bmatrix}$$

starting with

$$\mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

solution:

The Gauss-Seidel algorithm for this system can be formulated by:

- (i) Moving the off-diagonal terms to the right-hand side of the equation,
- (ii) Dividing each equation by the diagonal coefficient
- (iii) Replacing the above-diagonal terms on the right by their values from the previous iteration, and
- (iv) Replacing the below-diagonal terms on the right by their values from the current iteration

i.e., for this system:

$$x_1^{(k+1)} = -\frac{1}{8}x_2^{(k)} + \frac{1}{4}x_3^{(k)} + \frac{1}{2}
 x_2^{(k+1)} = -\frac{1}{4}x_3^{(k)} + \frac{1}{4}
 x_3^{(k+1)} = \frac{1}{5}x_1^{(k+1)} - \frac{9}{10}$$

Proceeding

$$x_1^{(1)} = -\frac{1}{8}x_2^{(0)} + \frac{1}{4}x_3^{(0)} + \frac{1}{2}$$

$$x_2^{(1)} = -\frac{1}{4}x_3^{(0)} + \frac{1}{4}$$

$$x_3^{(1)} = \frac{1}{5}x_1^{(1)} - \frac{9}{10}$$

or
$$x_1^{(1)} = -\frac{1}{8}(0) + \frac{1}{4}(0) + \frac{1}{2} = 0.5000$$
 $x_2^{(1)} = -\frac{1}{4}(0) + \frac{1}{4} = 0.2500$
 $x_3^{(1)} = \frac{1}{5}(0.5000) - \frac{9}{10} = -0.8000$

or

$$\mathbf{x}^{(1)} = \begin{bmatrix} 0.5000 \\ 0.2500 \\ -0.8000 \end{bmatrix}$$

For the next iteration:

$$x_1^{(2)} = -\frac{1}{8}x_2^{(1)} + \frac{1}{4}x_3^{(1)} + \frac{1}{2}$$

$$x_2^{(2)} = -\frac{1}{4}x_3^{(1)} + \frac{1}{4}$$

$$x_3^{(2)} = \frac{1}{5}x_1^{(2)} - \frac{9}{10}$$

or

$$x_1^{(2)} = -\frac{1}{8}(0.2500) + \frac{1}{4}(-0.8000) + \frac{1}{2} = 0.2687$$
 $x_2^{(2)} = -\frac{1}{4}(-0.8000) + \frac{1}{4} = 0.4500$
 $x_3^{(2)} = \frac{1}{5}(0.2687) - \frac{9}{10} = -0.8463$

Therefore

$$\mathbf{x}^{(2)} = \begin{bmatrix} 0.2687 \\ 0.4500 \\ -0.8463 \end{bmatrix}$$

(Note the exact solution is:

$$\mathbf{x} = \begin{bmatrix} 0.228476 \dots \\ 0.463576 \dots \\ -0.854304 \dots \end{bmatrix}$$

and so our iterative solution is already not to bad.

b. Was Gauss-Seidel a "good" choice for this problem? Briefly explain your answer.

solution:

Probably not, at least assuming that the criteria for "best" require finding a reasonably correct solution (effectiveness) with the minimum number of computations (efficiency). This is neither a large nor a sparse problem. Gaussian Elimination would get the **exact** solution in about nineteen flops. These two iterations have already cost about twenty-one flops, and so far we only have answers that are accurate to one to two significant digits. The mere fact that **A** is diagonally dominant here, and therefore convergence is guaranteed, does not alone make an iterative method a "good" choice unless your explicit criterion for good is that the algorithm produces a reasonably correct solution irrespective of cost.

5. (30 points) Consider the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{array} \right]$$

a. Show that the singular values of this matrix are exactly $\sigma_1 = \sqrt{2 + \epsilon^2}$ and $\sigma_2 = \epsilon$. (Do **not** do the entire singular value decomposition!)

solution:

By definition, the singular values of \mathbf{A} are the square roots of the eigenvalues of $\mathbf{A}^H \mathbf{A}$. So first compute

$$\mathbf{A}^H \, \mathbf{A} = \left[\begin{array}{ccc} 1 & \epsilon & 0 \\ 1 & 0 & \epsilon \end{array} \right] \left[\begin{array}{ccc} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{array} \right] = \left[\begin{array}{ccc} 1 + \epsilon^2 & 1 \\ 1 & 1 + \epsilon^2 \end{array} \right]$$

Then, if σ_i are the singular values of **A**, the eigenvalues of this matrix must be $\lambda_1 = 2 + \epsilon^2$ and $\lambda_2 = \epsilon^2$. So check:

$$\mathbf{A}^H \mathbf{A} - (2 + \epsilon^2) \mathbf{I} == \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

which is clearly singular. Similarly,

$$\mathbf{A}^H \, \mathbf{A} - \epsilon^2 \mathbf{I} == \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

which is also obviously singular. Therefore the given values are the singular values of A.

b. Suppose ϵ is a sufficiently small number that, in some computers, because of round-off errors, the quantity $1 + \epsilon^2$ actually evaluates to 1. How do the numerically-computed singular values then differ from the actual ones.

solution:

In this case,

$$fl\left(\mathbf{A}^{H}\,\mathbf{A}\right) = fl\left(\begin{bmatrix} 1+\epsilon^{2} & 1\\ 1 & 1+\epsilon^{2} \end{bmatrix}\right) = \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}$$

Since

$$\det (fl(\mathbf{A}^H \mathbf{A}) - \lambda \mathbf{I}) = \det \begin{bmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda$$

The eigenvalues of this matrix are easily shown to be

$$\tilde{\lambda}_1 = 2$$
 and $\tilde{\lambda}_2 = 0$

Therefore the computed singular values will be:

$$\tilde{\sigma}_1 = \sqrt{2}$$
 and $\tilde{\sigma}_2 = 0$

In otherwords, this matrix is numerically singular.

c. What is the actual condition number of \mathbf{A} (in the Euclidean norm). Based on this result, is the result you obtained in part b. above reasonable?

solution:

The condition number of the original matrix, in the Euclidean norm, is given by:

$$\kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_2} = \frac{\sqrt{2 + \epsilon^2}}{\epsilon}$$

From this, it is obvious that, for "small" ϵ ,

$$\kappa(\mathbf{A}) \doteq \frac{\sqrt{2}}{\epsilon}$$

Therefore, the matrix will be very ill-conditioned, i.e. nearly singular in this case. Therefore, the fact that round-off errors can make it exactly singular should not be that surprising.

6. (30 points) A 5000×1 vector **x** must undergo a projection given by:

$$\left(\mathbf{I}-\mathbf{P}\,\mathbf{P}^{H}\right)\,\mathbf{x}$$

where \mathbf{P} is a 5000×3 matrix, the first fourty-two hundred rows of which are *identically zero*. The result will be stored in the a new location associated with the vector \mathbf{y} . Give no more than four lines of MATLAB code that will accomplish this in a highly efficient manner. Estimate the number of flops and amount of additional storage required by your code.

solution:

Note that if we, conceptually, partition \mathbf{P} and \mathbf{x} as follows:

$$\mathbf{P} = \begin{bmatrix} \mathbf{0} \\ \dots \\ \mathbf{P}_{21} \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \dots \\ \mathbf{x}_2 \end{bmatrix}$

where \mathbf{P}_{21} is 800×3 , etc., then we see that:

$$\mathbf{y} = (\mathbf{I} - \mathbf{P} \, \mathbf{P}^{H}) \, \mathbf{x} = \begin{bmatrix} \mathbf{x}_{1} \\ \cdots \\ \mathbf{x}_{2} \end{bmatrix} - \begin{bmatrix} \mathbf{0} \\ \cdots \\ \mathbf{P}_{21} \end{bmatrix} \left(\begin{bmatrix} \mathbf{0} & \vdots & \mathbf{P}_{21}^{H} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \cdots \\ \mathbf{x}_{2} \end{bmatrix} \right)$$

$$= \begin{bmatrix} \mathbf{x}_{1} \\ \cdots \\ \mathbf{x}_{2} \end{bmatrix} - \begin{bmatrix} \mathbf{0} \\ \cdots \\ \mathbf{P}_{21} \end{bmatrix} \left(\mathbf{P}_{21}^{H} \, \mathbf{x}_{2} \right)$$

$$= \begin{bmatrix} \mathbf{x}_{1} \\ \cdots \\ \mathbf{x}_{2} - \mathbf{P}_{21} \left(\mathbf{P}_{21}^{H} \, \mathbf{x}_{2} \right) \end{bmatrix}$$

Probably the most efficient MATLAB code for this operation would be

$$\begin{array}{lll} y & = x \\ v & = P(4201:5000,4201:5000)'*x(4201:5000) \\ y(4201:5000) & = y(4201:5000) \dots \\ & & - P(4201:5000,4201:5000)*v \end{array}$$

Implementing this method will require:

- (1) Multiplying one 3×800 matrix (\mathbf{P}_{21}^H) by an 800×1 vector (\mathbf{x}_2), at a cost of approximately $4800 \ (= 2 \times 800 \times 3)$ flops, plus
- (2) Multiplying the resulting 3×1 vector on the left by an 800×3 matrix (\mathbf{P}_{21} , at the cost of another approximately 4800 flops, then finally
- (3) Subtracting two 800×1 vectors, at the cost of 800 flops.

Total cost = 10,400 flops (approximately).

This code would requie, besides the 5000 location needed to hold \mathbf{y} , an additional 800 storage locations to hold \mathbf{v} , plus and up to an additional 800 temporary storage locations to hold $\mathbf{P}_{21}\mathbf{v}$. This cost is negligible.